Developing soil Fumigation alternatives to reduce agricultural pesticide exposure

Christopher Simmons (PI) Department of Food Science and Technology

Jean VanderGheynst (Co-PI) Department of Biological & Agricultural Engineering

Jim Stapleton (Co-PI) Division of Agricultural and Natural Resources

Deborah Bennett (Co-PI) Department of Public Health Sciences

Biosolarization is...

...an alternative to conventional soil fumigation for pest control.

...a technology to reduce the inherent health risks associated with agricultural use of toxic pesticides.

APPLY CLEAR FILM AND IRRIGATE TO FIELD CAPACITY

Atmosphere

Tarp

Soil

BACTERIA PRODUCE BIOPESTICIDES VIA ANAEROBIC FERMENTATION

FOR EXAMPLE, ORGANIC ACIDS:

ACETIC ACID

PROPIONIC ACID

BUTYRIC ACID

Project goals

Maximize biosolarization efficacy in California agriculture

Measure soil emissions during biosolarization

Measure and increase grower awareness of biosolarization

Interfacing with the CA almond inclustry

Hull- and hull/shell mix-amendments lead to accumulation of organic acids in the soil

Endogenous organic acids on almond residues provide immediate acidification of the soil, which may improve pest inactivation kinetics.

Root lesion nematode (*Pratylenchus* spp.) inactivation

Image: Howard Ferris, UC Davis

Extracts from amended soils exhibit robust nematocidal activity

Impact

~10 acre field trial with the Nicolaus Nut Co. in Chico, CA

Additional support from the Almond Board of California

Root lesion nematodes were controlled in solarized and biosolarized soils

Biosolarization amendments can introduce plant nutrients to the soil

A complex array of volatile compounds are produced during biosolarization

A complex array of volatile compounds are produced during biosolarization

COMPOUND	PROPERTIES	PROMINENCE
Isoamyl Alcohol	 Anti-fungal Starch fermentation by-product unpleasant odor, irritant at 150 ppm 	Small constituent of volatiles from hull amended samples ~ 1 %
2-Butanone	Natural product: fruits, veggies, treesPEL 200 ppm 8 hr	Medial constituent of volatiles from hull amended samples ~ 5-10
2-Pentanone	•plants and apple•PEL 200 ppm 8 hr	Medial constituent of volatiles from hull amended samples ~ 5-10
Diacetyl	 secondary or malolactic fermentation "popcorn workers lung", PEL 8 hr 0.01 ppm 	Large constituent of volatiles from hull amended samples ~ 10 %
Acetoin	 product of microbial fermentation Antimicrobial Plant - growth promoting Oxidizes to diacetyl on exposure to air. 	Very large constituent of volatiles from hull amended samples ~ 20 %
phenylethyl alcohol	 found in almond Saccharomyces cerevisiae, plant, aspergillus metabolite antimicrobial, antiseptic plant growth retardant 	Small constituent of volatiles from hull amended samples ~ 1 %

Ongoing work
Almond yield effects
Effects on additional crops
Exposure risk reduction
Grower outreach

Acknowledgements

Simmons Lab Ygal Achmon Jesus Fernandez Bayo Joshua Claypool Alyx Crichton-Keyes Emily Lopez Amy Parr Emily Shea Juliano Toniato

VanderGheynst Lab Duff Harrold Kelley Hestmark Tara Randall Jean VanderGheynst (Co-PI)

Jim Stapleton (Co-PI)

Deborah Bennett (Co-PI)

Amanda Hodson (Co-PI on Almond Board project)

Nicolaus Nut Co. Rory Crowley George Nicolaus

Western Center for Agricultural Health and Safety

